Weak Boson Emission in Hadron Collider Processes

all results are preliminary

- 1. Introduction
- 2. Isolated Photon Production
- 3. Charged Drell-Yan Production
- 4. $W\gamma$ and $Z\gamma$ Production
- 5. Single Top Production
- 6. Conclusions

Ulrich Baur
State University of New York at Buffalo

1 – Introduction

- In the past few years calculations of electroweak (EW) radiative corrections at high energies ($\gg M_{W,Z}$) have been performed for a number of processes
 - $rightharpoonup f'ar f o \ell'\ell$ (Kühn et al.)
 - $pp (p) \rightarrow \ell^{\pm} \nu, \ pp (p) \rightarrow \ell^{+} \ell^{-}$ (UB, D. Wackeroth, Dittmaier and Krämer)
 - rightharpoonup isolated photon and Zj production at hadron colliders (Kühn et al.)
 - di-boson production (Accomando et al., Hollik and Meier)
 - inclusive jet production at hadron colliders (Nolten et al.)
 - $riangleq p^{\scriptscriptstyle (-)} p o t ar t$ (Nolten et al., Kühn et al.)
 - single top production (Comelli et al., Beccaria et al.)

- These calculations show that EW corrections become large and negative at high energies, due to the presence of Sudakov-like logarithms $((\alpha/\pi)\log(\hat{s}/M_{W,Z}^2))$.
- Where are these logarithms coming from?
 - In QED, these logarithms cancel between virtual and real corrections (KLN theorem); observables which are inclusive over soft final states (ie. photons) are infrared safe (Bloch-Nordsieck (BN) theorem)
 - In the EW case, the incoming $q'\bar{q}$ system does have a non-zero $SU(2)\times U(1)$ charge, and, due to the non-abelian character of the gauge group, the BN-theorem is violated (remark: In QCD the BN-theorem is also violated, but one sums/averages over colors. This effectively restores the BN-theorem (Bodwin, Brodsky, Lepage))

- In the EW case, the W and Z masses act as infrared regulators, and the virtual weak corrections are finite. There is no technical reason to take into account real emission diagrams.
- Furthermore, since the EW symmetry is broken and the massive W and Z bosons decay, the real EW radiative corrections (ie. W and Z radiation) lead to a different final state.
- Therefore, contributions from weak boson emission usually are not taken into account when calculating electroweak radiative corrections.
- This is ok if one considers exclusive final states.
- However, in experiment, analyses usually involve (semi-)inclusive final states.

- Real EW corrections (W and Z radiation) thus have to be included in the calculation.
- This results in a partial compensation of the large negative corrections originating from the Sudakov-like logarithms
- So, how large are EW radiative corrections when realistic experimental conditions are taken into account?
- I calculated weak boson emission effects for all processes for which the virtual weak corrections are known.
- In the following I discuss some interesting examples
- wherever possible consider cross section ratios: this minimizes cut,
 PDF and scale dependence

2 – Isolated Photon Production

- LO process: $p_{p}^{(-)} \rightarrow \gamma j$
- typical CDF/DØ selection criteria:
 - require a hard $(p_T(\gamma) > 10 \text{ GeV})$, isolated $(\Delta R > 0.4)$ photon
 - some analyses also require the missing E_T in the event to be small $(p_T < 20 \text{ GeV})$ to reject events with large calorimeter noise
 - there is no restriction on the number of jets or leptons in the event
- The one-loop NLL $\mathcal{O}(\alpha_s \alpha^2)$ weak corrections have a very compact form and can easily be included in a γj parton level MC program (Kühn et al.)

they agree at the percent level with the full weak one-loop corrections

- Real EW $\mathcal{O}(\alpha_s \alpha^2)$ radiative corrections: $W\gamma j$ and $Z\gamma j$ production
 - ightharpoonup Don't care about the jet in $V\gamma j$ (V=W,Z): it can be soft.
 - ightharpoonup Should include $V\gamma$ production
 - ightharpoonup better strategy: include $V\gamma$ production at NLO QCD (well known for more than a decade)
- Cuts (only on the photon!)

$$p_T(\gamma) > 25 \, (50) \, \text{GeV}$$
 at Tevatron (LHC), $|\eta(\gamma)| < 2.5$ $\Delta R(\gamma, X) > 0.4$

$$X = j, \ell$$

• Sometimes one also imposes a p_T veto: require

$$p_T < 5 \text{ GeV}^{1/2} \sqrt{\sum p_T}$$

• consider relative correction w/r to LO cross section:

$$\mathcal{R}_Y(X) = \frac{d\sigma/dX}{d\sigma^{LO}(Y)/dX} - 1$$

with $Y = \gamma j, X = p_T(\gamma)$. Tevatron:

• There are large logarithms present in $V\gamma j$ production:

$$d\hat{\sigma}(q_1g \to V\gamma q_{1,2}) = d\hat{\sigma}(q_1g \to \gamma q_1) \frac{\alpha}{4\pi \sin^2 \theta_W} \log^2 \left(\frac{p_T^2(\gamma)}{M_V^2}\right)$$

- there are no large logarithms in $V\gamma$ production: it contributes significantly only for $p_T(\gamma) < 200 \text{ GeV}$
- the one-loop EW corrections are a few percent at most at the Tevatron weak boson emission considerably reduces the effect of the virtual weak corrections
- At the LHC one can measure the $p_T(\gamma)$ distribution out to 1.5 TeV with 10 fb⁻¹:
 - without weak boson emission: $\mathcal{R}_{\gamma j} = -0.15$
 - rightharpoonup including weak boson emission: $\mathcal{R}_{\gamma j} = -0.11$
 - moderate reduction

- weak boson emission effects are of the same size as the leading two-loop electroweak corrections (Kühn et al.)
- are the combined real + virtual weak corrections important?
 - compare with statistical and systematic uncertainties
 - Tevatron: systematic uncertainties dominate over statistical, except for the highest values of $p_T(\gamma)$ one can access
 - rightharpoonup Tevatron: systematic uncertainties are 10-20%
 - expect similar uncertainties at the LHC
 - real + virtual EW corrections are important at the LHC, but probably not at the Tevatron

3 – Charged Drell-Yan Production

- LO: $pp \to \ell \nu$
- used to search for new heavy charged vector bosons
- selection criteria:
 - one high p_T charged lepton ($p_T(\ell) > 25$ GeV): events with two or more charged leptons are classified as di-boson events
 - rightharpoonup missing transverse momentum $p_T > 25 \text{ GeV}$
 - any number of jets
- real EW radiative corrections: $W^{\pm}\ell\nu$ and $Z\ell\nu$ production (WW, WZ production, and W, Z bremsstrahlung diagrams)

- virtual corrections: full one-loop $\mathcal{O}(\alpha)$ (including photonic corrections)
- focus on $\ell=e$; recombine photons and electrons for small opening angles
 - necessary because photons and electrons which are collinear cannot be discriminated
 - minimizes the effect of the photonic corrections (we are not interested in them)
- for μ final state relative effects are smaller because photonic corrections play a larger role (no recombination with photon; hard photons close to μ are vetoed)
- consider $e\nu$ transverse mass (M_T) and $p_T(e)$ distributions

- virtual weak corrections become $\mathcal{O}(10\%)$ at very large M_T or p_T
- weak boson emission contribution small (about 1%) in the M_T distribution
- they are much larger (about 5%) in the $p_T(e)$ distribution reason: $e\nu$ necessarily off-shell in M_T distribution, but can be on-shell in p_T distribution

- At the LHC, the $e^+\nu$ and $e^-\nu$ cross sections are different ($\sigma(e^+\nu)\gg \sigma(e^-\nu)$ at high energies)
- The virtual corrections are proportional to the Born amplitude \rightarrow relative corrections are equal for $e^+\nu$ and $e^-\nu$
- Since $e\nu W$ production dominates the weak boson emission processes, the relative corrections for $e^+\nu$ and $e^-\nu$ are different
- Weak boson emission effects for $e^-\nu$ are substantially larger
- Taking into account weak boson emission is clearly important

4 – $W\gamma$ and $Z\gamma$ Production

- physics interest: probing weak boson self-couplings
- virtual weak and photonic $\mathcal{O}(\alpha)$ corrections have only been calculated for LHC
 - → do not consider Tevatron case here
- event selection:
 - one (two) isolated charged lepton(s) with $p_T(\ell) > 25$ GeV in $W\gamma$ ($Z\gamma$) case
 - $p_T > 25 \text{ GeV for } W\gamma \text{ production}$
 - $rac{1}{2}$ p_T veto in $Z\gamma$ case: $p_T < 5 \text{ GeV}^{1/2} \sqrt{\sum p_T}$
 - riangleq one hard, isolated photon: $p_T(\gamma) > 50$ GeV, $\Delta R(\ell, \gamma) > 0.4$

- The high photon p_T cut essentially eliminates contributions from radiative W and Z decay
- weak boson emission processes: $W\gamma V$ and $Z\gamma V$ (V=W,Z) production
- The SM LO $W\gamma$ cross section is suppressed by a radiation zero: all helicity amplitudes vanish for $\cos\theta^*=\pm 1/3$ where θ^* is the parton CM scattering angle
- There is no radiation zero in $pp \to W\gamma V$
- the $W\gamma V$ to $W\gamma$ cross section ratio for inclusive V decays can become quite large
- Since $\sigma(WW\gamma) \gg \sigma(WZ\gamma)$ and $\sigma(W^+\gamma) \gg \sigma(W^-\gamma)$ at high energies, the effect is more pronounced in the $W^-\gamma$ channel

• comparison of cross section normalized to LO $W\gamma$ rate, δ , for virtual weak and photonic corrections and for weak boson emission (Accomando et al.)

$p_T(\gamma)$	δ (1-loop)	$\delta(W^+\gamma V)$	$\delta(W^-\gamma V)$
250 GeV	-7.2(1)%	8.9%	14.9%
450 GeV	-14.7(1)%	13.5%	28.3%
700 GeV	-21.8(1)%	21.6%	53.2%

- in the $W^+\gamma$ case, virtual and real corrections approximately cancel (accidental?)

• Since LO $W\gamma$ cross section is suppressed, the NLO QCD corrections to $pp \to W\gamma$ become very large at high p_T :

$$d\hat{\sigma}(q_1g \to V\gamma q_{1,2}) = d\hat{\sigma}(q_1g \to \gamma q_1) \frac{\alpha}{4\pi \sin^2 \theta_W} \log^2 \left(\frac{p_T^2(\gamma)}{M_V^2}\right)$$

- At large $p_T(\gamma)$, the photon is usually balanced by a hard jet
- this obscures effects of anomalous $WW\gamma$ couplings
- therefore: impose jet veto: no jets with $p_T(j) > 50$ GeV, $|\eta(j)| < 2.5$ are allowed
- this reduces weak boson emission by more than a factor 10 about one-half of the remaining effect is from $WZ\gamma$ production with $Z\to \bar{\nu}\nu$

- $Z\gamma$ production:
 - there is no radiation zero
 - rightharpoonup the $Z\gamma V$ to $Z\gamma$ cross section ratio does not exceed $\mathcal{O}(0.1)$
 - ightharpoonup QCD correction do not become large at high photon p_T
 - no need to impose a jet veto
 - weak boson emission in $Z\gamma$ production without a jet veto has about the same size as in $pp \to W\gamma$ with a jet veto
 - $p_T(\gamma) = 300 \text{ GeV}$: $\delta(1 \text{loop}) = -0.15(1)$; $\delta(Z\gamma V) = 0.02$ $p_T(\gamma) = 500 \text{ GeV}$: $\delta(1 - \text{loop}) = -0.24(2)$; $\delta(Z\gamma V) = 0.03$

5 – Single Top Production

- Differs substantially from previous cases
- focus on LHC
- s-channel single top production: $pp \to W^* \to t\bar{b}$
 - ightharpoonup LO: $\mathcal{O}(\alpha^2)$
 - rightharpoonup weak boson emission processes: $t\bar{b}W^-$ and $t\bar{b}Z$ production
 - $rightharpoonup tar bW^-$ production dominated by $\mathcal{O}(\alpha_s^2)$ tar t production! (Comelli, Ciafaloni)
 - $\sigma(t\bar{b}W) \gg \sigma(t\bar{b})$

- *t*-channel single top production
 - rightharpoonup use b-quark PDF approach: $u\bar{b} \to t\bar{d}$ etc. $\mathcal{O}(\alpha^2)$
 - $rac{1}{2}$ require semileptonic top decay: $pp o tj o \ell \nu bj$
 - justified by selection cuts (CMS inspired)
 - $ightharpoonup p_T(\ell) > 20$ GeV, $|\eta(\ell)| < 2.5$
 - $\rightarrow p_T > 40 \text{ GeV}$
 - \rightarrow one *b*-jet with $p_T(b) > 35$ GeV, $|\eta(b)| < 2.5$, additional *b*-jets in this region are vetoed
 - \rightarrow one non-tagged jet with $p_T(j) > 40$ GeV, $2.5 < |\eta(j)| < 4.5$ (forward tagging jet), additional jets are vetoed
 - on b-tagging efficiencies are included in numerical results

- weak boson emission processes in t-channel single top production: $pp \to tjV$
- tjW occurs at $\mathcal{O}(\alpha_s\alpha^2)$ (eg $bg \to tWg$); tjZ at $\mathcal{O}(\alpha^3)$
- So, is $\sigma(tjW) \gg \sigma(tj)$? Not nessecarily.....
 - rightharpoonup the jet veto suppresses tjW and tjZ production
 - on the other hand: at large $p_T(t)$, the forward jet requirement makes the tj cross section decrease much faster than the tjV rate
 - include contribution where jet from V decay is the one detected \rightarrow need tW production at NLO QCD
 - we use NLO tW production from MCFM (Campbell, Tramontano); rescale for $W \to jj$
 - \rightarrow ignore QCD corrections to W decay in tW production
 - rightharpoonup also include $\bar{t}t \to tbW$ where b-quark is misidentified as light jet

- virtual weak corrections (Beccaria et al) are only known as a function of $\sqrt{\hat{s}}$
 - → direct comparison is impossible
- At $\sqrt{\hat{s}}=1$ TeV they reduce the cross section by $\approx 20-30\%$
 - $riangleq \sqrt{\hat{s}} = 1 \text{ TeV}$ corresponds to roughly $p_T(t) \sim 500 \text{ GeV}$
 - at $p_T(t) = 500$ GeV the $tjV(\bar{t}jV)$ to $tj(\bar{t}j)$ cross section ratio is 0.8 (4.4)
 - despite the jet veto, weak boson emission plays an important role in t-channel single top production at high energies

6 – Conclusions

- The size of the EW radiative corrections at hadron colliders depends on the experimental selection criteria
- In (partially) inclusive reactions, real EW radiative corrections may significantly reduce the effect of the $\mathcal{O}(\alpha)$ one-loop corrections
- Details depend on the process considered, and the distribution which is studied.